ADICHUNCHANAGIRI UNIVERSITY

18MAT31

Third Semester BE Degree Examination January 2020 (CBCS Scheme)

Time: 3 Hours

Max Marks: 100 marks

Sub: Engineering Mathematics - III

Q P Code: 60301

Instructions: 1. Answer five full questions.

- 2. Choose one full question from each module.
- 3. Your answer should be specific to the questions asked.
- 4. write the same question numbers as they appear in this question paper.
- 5. Write Legibly

Module – 1

7 marks

6 marks

Find the Laplace transform of $\frac{\cos at - \cos bt}{t}$.

b A periodic function f(t) of period a, a > 0 is defined by $f(t) = \begin{cases} E & 0 < t < a/2 \\ -E & \frac{a}{2} < t < a \end{cases}$ Show that $L[f(t)] = \frac{E}{s} \tanh(\frac{as}{4})$

Solve the differential equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-2}$ with y(0) = 0 = y'(0) by using Laplace transforms. 7 marks transforms.

2 a Find L^{-1} [$\cot^{-1}s$].

7 marks

Express f(t) = $\begin{cases}
\sin t, & 0 < t < \pi, \\
\sin 2t, & \pi < t, \pi.
\end{cases}$

6 marks

 $\sin 3t$, $t > 2\pi$ in terms of unit step function and hence find their Laplace transform f(t).

Using Convolution theorem obtain inverse transformation of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$.

7 marks

Module - 2

a Find the Fourier series for the function $\frac{\pi - x}{2}$ in $0 < x < 2\pi$. 3

7 marks

Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ Find half range sine series for $f(x) = \begin{cases} \frac{1}{4} - x & 0 < x < 1/2 \\ x - \frac{3}{4} & 1/2 < x < 1 \end{cases}$

7 marks

Express y as a Fourier series upto the first harmonic given.

6 marks

Х					$4\pi/3$		
у	1.98	1.30	1.05	1.30	- 0.88	- 0.25	1.98

Or

a Obtain Fourier series for the function f(x) = |x| in $-\pi \le x \le \pi$ hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$

7 marks

b Expand f (x) = 2x - 1 as a cosine half range Fourier series in 0 < x < 1.

6 marks

PTO

Page 1 of 2

Obtain constant term and the coefficients of the first sine and cosine terms in the Fourier expansion of y from the table.

X	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

Module - 3

a Find the Fourier sine transforms of $f(x) = \frac{1}{x(1+x^2)}$.

7 marks

7 marks

b Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$

6 marks

Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, with $y_0 = y_1 = 0$ by using z transform.

7 marks

a Find the Fourier sine transform of $e^{-|x|}$ Hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}$, m > 0. 6

7 marks

b Obtain the Z-transform of $2n + \sin(n\pi/4) + 1$.

6 marks

Obtain the inverse Z-transform of $\frac{2z^2+3z}{(z+2)(z-4)}$.

7 marks

a Employ Taylor's method to find y at x=0.1 and 0.2 correct to four places of decimal in step size of 0.1 7 marks 7 given the linear differential equation $\frac{dy}{dx}$ - 2y = 3e^x whose solution passes through the origin.

Using fourth order Runge – Kutta method to find y at x = 0.1 given that $\frac{dy}{dx} = 3e^x + 2y$, y(0) = 0,

taking h = 0.1.

C Given that $\frac{dy}{dx} = x - y^2$ and the data y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, Y(0.6) = 0.1762, find 6 marks y(0.8) by using Adam-Bashforth method.

Using modified Euler's method find y(20.2) and y(20.4) given that $\frac{dy}{dx} = \log_{10}(\frac{x}{y})$ with y(20) = 5 7 marks 8

7 marks

b Solve: $(y^2 - x^2) dx = (y^2 + x^2) dy$ for x = 0 (0.2) 0.4 given that y = 1 at x = 0 initially, by applying Runge-Kutta Method of order 4.

c Apply Milne's Predictor and Corrector formulae to compute y(1.4) correct to four decimal places.

6 marks

given $\frac{dy}{dx} = x^2 + \frac{y}{2}$ with

X	X	1	1.1	1.2	1.3
	N. William	2	2.2156	2.4649	2.7514

Runge-Kutta method, solve $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 - y^2$ for x=0.2 correct to four decimal places, using the initial conditions y=1 and y'=0 when x=0.

7 marks

Solve the variational problem $\int_0^1 (12xy + y'^2) dx$ under the conditions y(0) = 3 and y(1) = 6.

7 marks

A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary.

6 marks

Or

Apply Milne's method to solve $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ given the following table of initial values.

7 marks

X	0	0.1	0.2	0.3
Y	1	1.1103	1.2427	1.399
y'	1	1.2103	1.4427	1.699

Compute y (0.4) numerically.

Derive Euler's equation in the Standard form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$

7 marks

Prove that the shortest distance between two points in a plane is a straight line joining them.

6 marks